AIPUPOWER®

AC/DC Converter FG03-C4SXX Series

Typical Features

- Wide input voltage range 85-305VAC/70-430VDC
- No load power consumption 0.3W(Typ.)@220VAC
- Efficiency up to 78%(Typ.)
- Operating temperature from -40°C to +85°C
- Switching frequency 65KHz
- Short circuit protection & over current protection
- Isolation voltage 3600VAC
- Compliant with IEC/EN62368/UL62368
- With UL (E518940) CB & CE certificates
- Altitude during operation 5000m Max
- Mini size open-frame, industrial level design
- PCB SIP mounting

Application Field

FG03-C4SXX Series ----- Mini size & open-frame AC-DC power supplies with global adapted input voltage range both AC & DC available, low ripple, low temperature rise, low standby power consumption, high efficiency, high reliability, safety isolated and good EMC performance. This series of products can be widely used in the fields of Electric power, Industry, Instrument and Smart home devices, etc. The additional circuit diagram for EMC is recommended for the application with higher EMC requirement.

Typical Product List

		Output Specifications		Capacitive	Ripple & Noise	Efficiency	
Certificate	Part No.	Power	Voltage	Current	Load (Max) @220VAC	@20MHz (Max)	@full Load 220VAC
		(W)	Vo(V)	lo(mA)	uF	mVp-p	% (Typ.)
	FG03-C4S03	2	3.3	600	3000	100	69
	FG03-C4S05	3	5	600	3000	100	73
	FG03-C4S09	3	9	333	330	100	75
UL/CE/CB	FG03-C4S12	3	12	250	330	100	75
	FG03-C4S15	3	15	200	330	100	75
	FG03-C4S24	3	24	125	330	100	78

Note 1: The typical value of efficiency is based on the product tested after half an hour burn-in at full load.

Note 2: The full load efficiency should be in ±2% of the typical value in this table. The efficiency is calculated by the way that the full output power is divided by the input power.

divided by the input power.

Note 3: The Ripple & Noise is tested by the twisted pair method, please refer to the following Ripple & Noise test instruction.

Note 4: Please contact Aipu sales for other output voltages requirement in this series but not listed in this table.

Input Specifications					
Item	Operating Condition	Min	Тур.	Max	Unit
Input Voltage Range	AC input	85	220	305	VAC
	DC input	70	310	430	VDC

Guangzhou Aipu Electron Technology Co., Ltd

Guangzhou Aipu Electron Technology Co., Ltd reserves the copyright and right of final interpretation. Version: A/2 Date: 2025-05-12 Page 1 of 8

AC/DC Converter FG03-C4SXX Series

Input Fr	requency range	-	47	50	63	Hz
		Input 115VAC	-	-	0.10	
Inp	out Current	Input 220VAC	-	-	0.07	
-		Input 115VAC	-	-	22	A
Sur	rge Current	Input 220VAC	-	-	24	
		Input 115VAC	-		-	
No-load po	ower consumption	Input 220VAC	-	0.3	-	W
Leak	age Current	-		0.25mA TYP/2	230VAC/50Hz	
Recommen	nded External Fuse	-	1A	A-3A/300VAC	Time-delay fu	se
ł	Hot Plug	-		Unava	ailable	
ON/0	OFF Control	-		Unava	ailable	
Output S	pecifications					
	Item	Operating Condition	Min	Тур.	Max	Unit
Volta	ge Accuracy	Full input voltage range, 10-100% load (the unit can work stably at <10% load)	_	±2.0	±6.0	%
Line Regulation		Rated load	-	±1.0	±2.0	%
Load	Regulation	Nominal input voltage, 20%~100% load	-	±1.0	±3.0	%
Mini	imum Load	Single Output	10	-	-	%
		Input 115VAC (full load)				
lurn-o	on Delay Time	Input 220VAC (full load)	_	600	-	mS
_		Input 115VAC (full load)	-	50	-	
Power-o	ff Hold up Time	Input 220VAC (full load)	-	80	-	mS
Dynamic	Overshoot range	25%~50%~25%	-5.0	-	+5.0	%
Response	Recovery time	50%~75%~50%	-5.0	-	+5.0	mS
Outpu	ut Overshoot		≤10%Vo			%
Short ci	rcuit Protection	Full input voltage range	Continuous, self-recovery			Hiccup
Over Cu	rrent Protection	Input 220VAC	≥11(0% lo, self-rec	covery	Hiccup
Temp	perature Drift	-	-	±0.03%	-	%/° C
Ripp	ole & Noise	-	-	50	100	mV
General S	Specifications					
	Item	Operating Condition	Min	Тур.	Max	Unit
Switch	hing Frequency	-	-	65	-	KHz
Operat	ing Temperature	Refer to the Temperature Derating Graph	-40	_	+85	
Stora	ge Temperature	-	-40		+110	°C
		Wave soldering		260±4 ℃, t	ime 5-10S	1
Solderi	ing Temperature	Manual soldering			time 4-7S	
Dala	ative Humidity		10	-	90	%RH

Guangzhou Aipu Electron Technology Co., Ltd

Guangzhou Aipu Electron Technology Co., Ltd reserves the copyright and right of final interpretation. Version: A/2 Date: 2025-05-12 Page 2 of 8

AC/DC Converter FG03-C4SXX Series

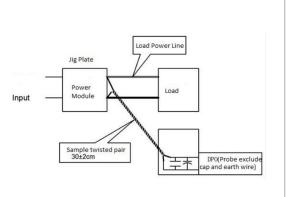
			1 903	-C4SXX S			<u> </u>	
Isolati	on Voltage	I/P-O/P Die	ectric test 1min, leakage cu	rrent ≤5mA	3600	-	-	VAC
nsulatio	n Resistance	I/P-O/P	@ DC500V		100	-	-	MΩ
ę	Safety Standa	rd	-		IEC/EN62368/UL62368			
	Vibration		_		10-55Hz,10G, 30 Min, along X,		(,Y,Z	
Safety Class -				CLASS	S II			
	MTBF		MIL-HDBK-217F @25	Ċ		>1000,0		
				4g (Ty				
	Unit Weight		-			+9 (T)	·p.)	
	erformance							
Tota	al Item	Sub Item	Test Standard		Pe	erformance/Cla	SS	
	EMI	CE	CISPR32/EN55032	CLASS B (V	with the Rec	ommended Circ	uit 2-3)	
		RE	CISPR32/EN55032	CLASS B (V	with the Rec	ommended Circ	uit 2-3)	
		RS	IEC/EN61000-4-3	10V/m Pe	rf.Criteria B	(with the Recon	nmended C	ircuit 2-3)
		CS	IEC/EN61000-4-6	3Vr.m.s P	erf.Criteria E	3 (with the Reco	mmended (Circuit 2-3
				Contact ±6ł	<v air="" td="" ±8k<=""><td>V Perf.Criteria</td><td>В</td><td></td></v>	V Perf.Criteria	В	
EMC		ESD	IEC/EIN01000-4-2	IEC/EN61000-4-2 (with the Recommended Cir		d Circuit 2-3)	Circuit 2-3)	
	EMS	Surge	IEC/EN61000-4-5	IEC/EN61000-4-5		-		
	_					d Circuit 2-3)		
		EFT	IEC/EN61000-4-4	±4KV Perf.Criteria B (with the Recommended Circuit 2-3)				
		Voltage dips & interruptions	IEC/EN61000-4-11 0%~70%		~70% Perf.Criteria B			
Mechai	nical Dimen							
						\bigcirc \square		
	00±0.1 0.039]		T (XM)					
	1.00±0.1 [0.039]		. 50 (MAX)					
	1. 00±0. 1 [0. 039]		11. 50 (MAX)					
	1. 00±0. 1 [0. 039]	26. 40±0. 5			[0. 079]	0. 50±0. 1 [R0. 020)]	
	1.00±0.1	26. 40 ± 0. 5 [1. 039]	[0. 055]	2.00	[0. 079] R	0. 50±0. 1 [R0. 020	1]	
			[0.110]	2.00	[0. 079] R	0.50±0.1 [R0.020)]	
			±0.5 [0.055]		[0. 079] R	0.50±0.1 [R0.020)]	
	[5.40±0.5 [0.606]					0.50±0.1 [R0.020	0]	
	15. 40±0. 5 [0. 606]		80±0.5 [0.055]			0.50±0.1 [R0.020	0]	
1.20 [0	15. 40±0. 5 [0. 606]		G G G G G G G G G G G G G G					
1.20 [0 3.96	5 (99 +1 (90) -1 (10) -1 (1			1 () PCE		iew 0.10]	No. Fu	
1.20 [0 3.96	5 [90 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H		G G G G G G G G G G G G G G	1 () PCE	3 4 B layout vertical v	iew 0.10] Terminal	No. Fu	AC(L)
1.20 [0 3.96	5 (99 +1 (90) -1 (10) -1 (1		G G G G G G G G G G G G G G	1 () PCE	3 4 B layout vertical v	iew 0.10] Terminal 1 2	No. Fu	AC(L) AC(N)
1. 20 [0 3. 96 3. U	5. [0, 156] 5. [0, 156] 5. [0, 156] 5. 96 [0, 156] 3. 96 [0, 156] 1. 156] 1. 156] 3. 96 [0, 156] 1. 156		G G G G G G G G G G G G G G	1 () PCE	3 4 B layout vertical v	iew 0.10] 1 2 3	No. Fu // //	AC(L) AC(N) -Vcap
1.20 [0 3.96 3. U G	5 [90 1 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	[1. 039]	G G G G G G G G G G G G G G	1 () PCE	3 4 B layout vertical v	iew 0.10] Terminal 1 2 3 4	No. Fu // //	AC(L) AC(N) -Vcap -Vcap
1. 20 [0 3. 96 3. U G	5 [90 1 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		G G G G G G G G G G G G G G	1 () PCE	3 4 B layout vertical v	iew 0.10] 1 2 3	No. Fu // //	AC(L) AC(N) -Vcap

AIPUPOWER

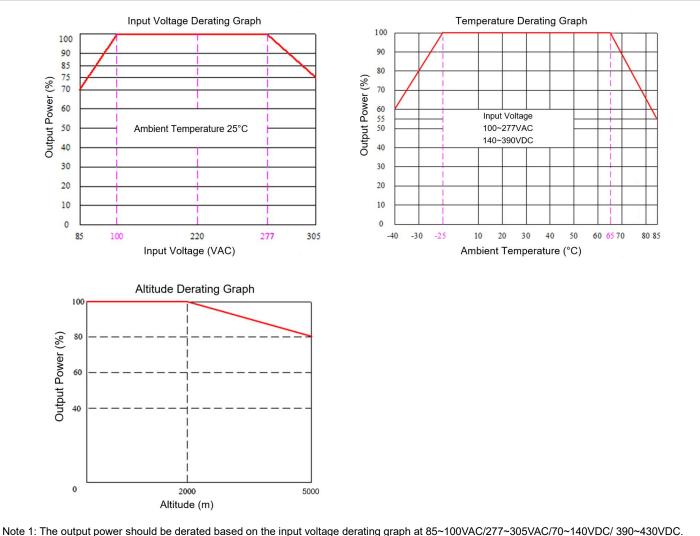
AC/DC Converter FG03-C4SXX Series

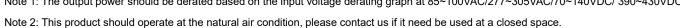
26.40 x 15.40 x 11.50 mm

Package Code


Dimensions L x W x H

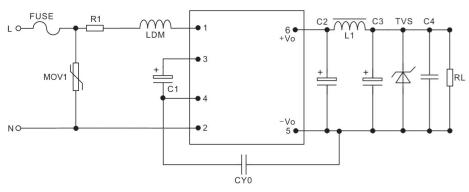
1.039 × 0.606 × 0.453 inch


Ripple & Noise Test Instruction (Twisted Pair Method, 20MHZ bandwidth)


1) The Ripple & noise test need 12# twisted pair cables, an oscilloscope which bandwidth should be set to 20MHz, 0.1uF polypropylene capacitor and 10uF high-frequency low-resistance electrolytic capacitors are connected in parallel with the probes (100M bandwidth). The oscilloscope should be set at the Sample Mode.

2) The test diagram is shown on the right. The converter output connects to the electronic load by the jig with cables which size should be defined according to the output current value. The twisted pair (length 30cm±2 cm) should be connected in parallel with the load, the location is as close as possible to the output pins or terminals. The test can be start after input power on.

Product Characteristics Graphs

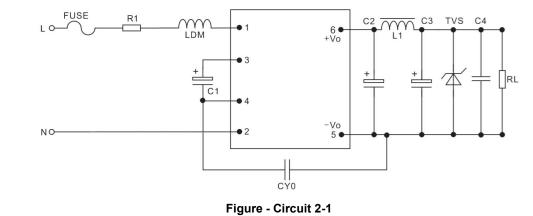


AIPUPOWER®

Recommended Circuits Diagrams for Application

1. Typical application circuit diagram

Part No.	C2 (* solid-state capacitor)	L1 (*)	C3 (* solid-state capacitor)	C4	LDM	R1(*)	CY0	FUSE (*)	TVS
FG03-C4S03 FG03-C4S05	220uF/10V 220uF/10V		220uF/10V 220uF/10V				Y1	1A/	SMBJ7.0A SMBJ7.0A
FG03-C4S09	220uF/16V	2.0uH/1A	68uF/16V	0.1uF/50V	1.2mH	12Ω/3W Wire-wound	/102M	300VAC Time	SMBJ12A
FG03-C4S12	220uF/16V	2.001//17	68uF/16V	0.101/001	/0.2A	resistor	/400V	delay	SMBJ20A
FG03-C4S15	220uF/35V		68uF/35V			16313101	AC	fuse	SMBJ20A
FG03-C4S24	68uF/35V		47uF/35V					1436	SMBJ30A


C1(*)	Conditions
10uF/450V	Input 85-305VAC, -25°C ~ +85°C
	Input 165-305VAC, -40°C ~ +85°C
22uF/450V	Input 85-305VAC, -40°C ~ +85°C

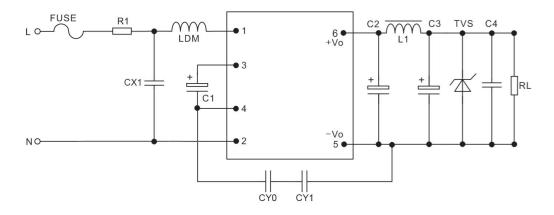
Note:

- 1) The * marked components are necessary for the application, not optional.
- 2) The Ripple current >200mA@100KHz electrolytic capacitor is recommended for C1 which works as the input filter capacitor at AC input and the EMC filter capacitor at DC input.
- 3) 14D561K/4500A is recommended for MOV1.

2. Recommended circuit diagrams for higher EMC requirements

Basic application

AC/DC Converter FG03-C4SXX Series



Application Environment	Ambient Temperature	EMS Level	EMI Class
Basic Application	-40 ℃ ~ +85℃	3	Class A

Component	Recommend Value	
FUSE(Necessary)	1A/300VAC, Time-delay fuse	
R1 (Wire-wound resistor, necessary)	12Ω/3W	
LDM	1.2mH/0.2A	

Note: Wire-wound resistor is recommended for R1 as the input plug-in resistor, SMD resistor or a carbon film resistor is not available for the application.

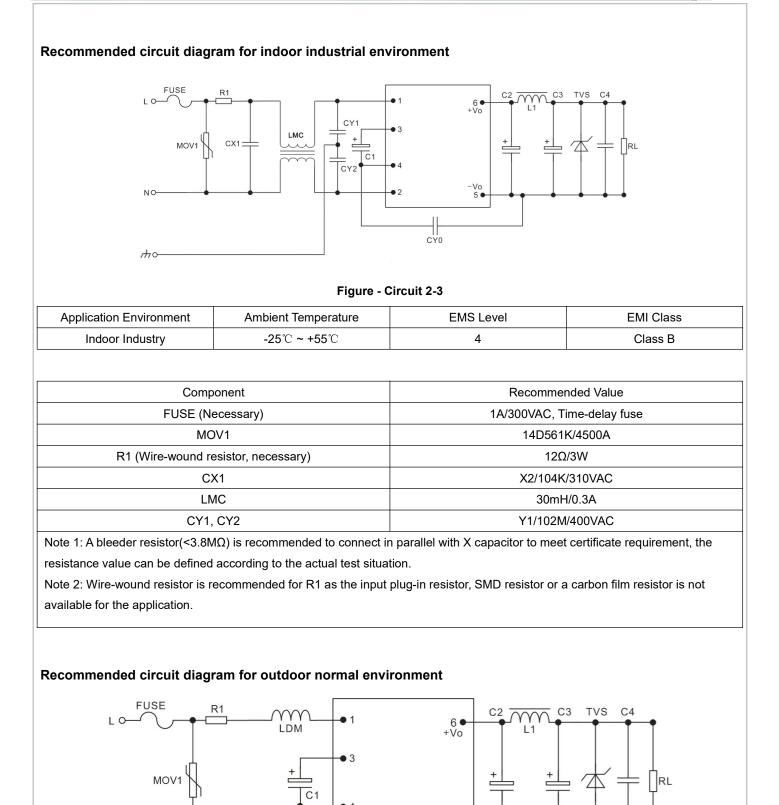
Recommended circuit diagram for indoor household normal environment

Figure - Circuit 2-2

Application Environment	Ambient Temperature	EMS Level	EMI Class
Indoor household Normal	-25℃~+55℃	3	Class B

Component	Recommended Value	
FUSE (Necessary)	1A/300VAC, Time-delay fuse	
R1 (Wire-wound resistor, necessary)	12Ω/3W	
CX1	X2/104K/310VAC	
LDM	1.2mH/0.2A	

Note 1: 2x Y capacitors (CY0 & CY1, Y1/222M/400VAC) are recommended for household application which is compliant with IEC/EN60335.


Note 2: A bleeder resistor(<3.8M Ω) is recommended to connect in parallel with X capacitor to meet certificate requirement, the resistance value can be defined according to the actual test situation.

Note 3: Wire-wound resistor is recommended for R1 as the input plug-in resistor, SMD resistor or a carbon film resistor is not available for the application.

AIPUPOWER

NO

Guangzhou Aipu Electron Technology Co., Ltd

Guangzhou Aipu Electron Technology Co., Ltd reserves the copyright and right of final interpretation. Version: A/2 Date: 2025-05-12 Page 7 of 8

CYO

Figure - Circuit 2-4

• 2

-Vo

5

AIPUPOWER®

AC/DC Converter FG03-C4SXX Series

Application Environment	Ambient Temperature	EMS Level	EMI Class
Outdoor normal	-40 °C ~ +85 °C	4	Class A

Component	Recommended Value	
FUSE (Necessary)	1A/300VAC, Time-delay fuse	
MOV1	14D561K/4500A	
R1 (Wire-wound resistor, necessary)	12Ω/3W	
LDM	1.2mH/0.2A	

Note: Wire-wound resistor is recommended for R1 as the input plug-in resistor, SMD resistor or a carbon film resistor is not available for the application.

Application Notice

1. The products should be used according to the specifications in this datasheet, otherwise it could be permanently damaged.

- 2. A fuse should be connected at input.
- 3. The product performance in this datasheet cannot be guaranteed if it works at a lower load than the minimum load defined.
- 4. The product performance in this datasheet cannot be guaranteed if it works at over-load condition.

5. Unless otherwise specified, all values or indicators in this datasheet are tested at Ta=25°C, humidity<75%RH, nominal input voltage and rated load (pure resistance load).

- 6. All values or indicators in this datasheet had been tested based on Aipupower test specifications.
- 7. The specifications are specially for the parts listed in this datasheet, any other non-standard model performances could be out of the specifications. Please contact our technician for specific requirements.

8. Aipupower can provide customization service.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China. Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821 E-mail: sales@aipu-elec.com Website: https://www.aipupower.com

Guangzhou Aipu Electron Technology Co., Ltd

Guangzhou Aipu Electron Technology Co., Ltd reserves the copyright and right of final interpretation. Version: A/2 Date: 2025-05-12 Page 8 of 8